https://ogma.newcastle.edu.au/vital/access/ /manager/Index en-au 5 Long-term corrosion of steels in deep, cold, low oxygen sea waters https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:48717 Wed 29 Mar 2023 16:01:19 AEDT ]]> Microbial functional diversity and carbon use feedback in soils as affected by heavy metals https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:45147 −1) and high (50 and 5000 mg kg−1) concentrations of Cd and Pb, respectively, in an artificially contaminated soil. In a laboratory incubation experiment, bio-available and potentially bio-available metal concentrations, selected soil properties (pH, electrical conductivity, total organic carbon and total nitrogen), and microbial parameters (microbial activity as basal respiration, microbial biomass carbon (MBC) and microbial functional groups) were determined at two sampling occasions (7 and 49 days). Metal contamination had no effect on the selected soil properties, while it significantly inhibited both microbial activity and MBC formation. Contaminated soils had higher microbial quotient (qCO2), suggesting there was higher energy demand with less microbially immobilized carbon as MBC. Notably, the efficiency of microbial carbon use was repressed as the metal concentration increased, yet no difference was observed between metal types (p > 0.05). Based on the microbial phospholipid fatty acids (PLFA) analysis, total PLFAs decreased significantly under metal stress at the end of incubation. Heavy metals had a greater negative influence on the fungal population than bacteria with respective 5–35 and 8–32% fall in abundances. The contaminant-driven (metal concentrations and types) variation of soil PLFA biomarkers demonstrated that the heavy metals led to the alteration of soil microbial community compositions and their activities, which consequently had an adverse impact on soil microbial carbon immobilization.]]> Wed 26 Oct 2022 13:44:24 AEDT ]]> Decomposition of soil organic matter as affected by clay types, pedogenic oxides and plant residue addition rates https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:38109 Wed 04 Aug 2021 09:52:45 AEST ]]> Characterization of organic carbon in decomposing litter exposed to nitrogen and sulfur additions: links to microbial community composition and activity https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:32293 Pinus massoniana needles were incubated in a subtropical plantation forest soil exposed to: no amendment (Control), N amendments of 81 (N1) and 270 (N2) mg kg−1, S amendments of 121 (S1) and 405 (S2) mg kg−1 and combined N and S amendments. Litter decomposition was measured as litter-derived carbon dioxide (CO₂) emissions and the litter C pools were partitioned using a two-pool model. Relationships between litter residue chemistry (assessed by 13C nuclear magnetic resonance spectroscopy analysis) and microbial community composition (probed by phospholipid fatty acid analysis, PLFA) and activity (the metabolic quotient, qCO₂) were investigated. Over the 420 days incubation period, N and S additions (except N and S addition alone at low rate) significantly increased litter decomposition by 7.2–18.9% compared to the Control. Decomposition was stimulated by 10.2–61.9% during the initial 56 days (stage 1) and in contrast, 8.3–42.1% inhibition was measured during 57–420 days (stage 2) across the addition treatments. Stimulation on litter-derived CO₂ emissions under the N and S additions was largely dependent on the loss of O-alkyl C, a dominant component of the litter active C pool. During the initial 7 days, N and S additions increased the ratio of fungal to bacterial PLFAs compared to the Control, which was accompanied by the increases in methoxyl C. The activity of microbes, particularly gram-negative bacteria, was also increased by N and S additions at stage 1, which was related to di-O-alkyl C. In contrast, fungal activity decreased under N and S additions at stage 2, accompanied by lowered C availability and increased methoxyl C. Alkyl C and aromatic C in the litter had positive relationships with the half-life of the slow C pool. Accordingly, the residue recalcitrance was increased under N and S additions compared with Control at stage 2, and was largely responsible for the inhibition of litter decomposition. Thus, N and S deposition is likely to increase the persistence of litter-derived recalcitrant C in subtropical forest soils in the long term.]]> Mon 21 May 2018 15:09:58 AEST ]]> Evaluating PFHxS toxicity to invertebrates and microbial processes in soil https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:53106 Fri 17 Nov 2023 11:54:55 AEDT ]]>